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ABSTRACT

The advancement of Industrial Internet-of-Things (IIoT) magnifies
the cyber risk of automated production lines, especially to decep-
tion attacks that tamper with the monitoring data to prevent the
manipulated operation of production lines from being detected. To
address this issue, we propose Stochastic Manufacturing (StoM),
a new paradigm of manufacturing that is resistant to deception by
design. StoM voids the foundation of deception attacks — i.e., the
highly predictable operation data due to the cyclical manufacturing
process — by injecting controlled stochasticity into the operation
of production lines without degrading manufacturing efficiency or
quality. StoM then examines if this stochasticity can be observed
from the operation data and triggers an alarm of deception attack
if not. We have experimentally evaluated StoM on two production
line platforms, showing StoM to detect deception attacks with a
detection rate exceeding 99.1%, a false alarm rate below 0.1%, and a
latency of less than 1.2 manufacturing cycles. Our empirical anal-
ysis also shows that it is highly impractical for attackers to spoof
the controlled stochasticity.
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1 INTRODUCTION

Automated production lines, essential to modern manufacturing
processes [30, 42], have revolutionized industries ranging from
aircraft to automobiles and beyond [5, 22, 40]. These production
lines enhance manufacturing efficiency by systematically organiz-
ing machines, including industrial robots, to perform repeatable
operations [2, 54]. The repeatable operation in each manufacturing
cycle makes the resultant operation data highly predictable, laying
the foundation for deception attacks [49] — attacks that manipulate
the manufacturing process and replace real-time monitoring data
with historical (and normal) operation data, deceiving the Supervi-
sory Control and Data Acquisition (SCADA) into believing that the
system is operating normally.

As areal-life deception attack, Stuxnet [23] destroyed thousands
of centrifuges by (i) intruding into the centrifuge system through
the compromise of an engineer’s computer (and USB sticks), (ii)
manipulating the centrifuge’s rotating speed via code injection, and
(iii) replaying previously recorded normal data to the SCADA. The
risk of deception attacks is magnified further with the advancement
of Industrial Internet-of-Things (IIoT), where automated production
lines are increasingly networked. This trend voids the ingrained
conviction that manufacturing systems are designed to work in
isolation. Additionally, operation data becomes easier to eavesdrop
on and manipulate [16, 50, 58].

To protect automated production lines from attacks, many In-
trusion Detection Systems (IDSs) have been developed based on
the SCADA-received monitoring data [26, 29, 45, 62, 67, 69]. For
example, Urbina et al. [63] designed an IDS that checks the real-
time operation data of ultra-filtration tanks with a physical model
to detect potential intrusions. Feng et al. [25] and Adepu et al. [3]
identified system invariants of water treatment plants and checked
whether the received operation data conflicts with these invari-
ants. However, these IDSs assume the authenticity of the SCADA-
received operation data on which the intrusion detection is built,
i.e., to serve as a root-of-trust, which does not hold for deception
attacks that tamper with the operation data.
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Unlike traditional approaches that address cyber attacks by
patching IDSs, this paper fundamentally disables deception attacks
by introducing a new manufacturing paradigm called Stochastic
Manufacturing (StoM). StoM disrupts the foundation of deception
attacks — namely, the predictable operation of production lines —
by injecting controlled stochasticity into the manufacturing process.
Specifically, StoM injects randomized control commands into the
operation of automated production lines and then cross-validates
the empirically observed operation data with the expected system
behavior. A mismatch flags a deception attack. StoM does not re-
quire any hardware retrofits and can thus be deployed to all existing
production lines as a software module of SCADA.

The challenges in the design of StoM are two-fold. First, StoM’s
randomization of the production line operation must not degrade
manufacturing quality or efficiency. StoM addresses this challenge
in three steps: (i) identifying control commands that only impact
the time between consecutive manufacturing steps, not the pro-
cessing of an object; (ii) modeling the dependencies between these
feasible control commands and the resulting operation time for
each manufacturing step; (iii) jointly randomizing the control com-
mands of all manufacturing steps to ensure the total operation
time (and hence the manufacturing efficiency) is kept at its original
level. Second, when validating the observed manufacturing process,
StoM cannot assume any knowledge about the dynamics of man-
ufacturing machines, that is, how the machines’ onboard sensor
readings change with given control commands. This information
often requires proprietary details from equipment manufacturers
(such as ABB) and is difficult to identify based solely on operation
data [8]. StoM tackles this challenge by validating the observed
manufacturing process in the time domain: identifies the time to
complete each manufacturing step based on the operation data and
cross-validates it with the expected timings.

We have implemented and evaluated StoM on two platforms of
automated production lines: the Automated Automobile Manufac-
turing (AVM) and the Automated Bottle Manufacturing (ABM). The
experiments encompassed more than 12,500 manufacturing cycles,
demonstrating StoM’s ability to (i) detect deception attacks with a
detection rate exceeding 99.1%, a false alarm rate below 0.1%, and
a latency of less than 1.2 manufacturing cycles, and (ii) maintain
manufacturing efficiency with a precision of 97.9%.

In summary, this paper makes the following contributions:

e Revealing a fundamental vulnerability of automated production
lines to deception attacks, i.e., the predictable operation;

e Designing StoM, a new paradigm of production line operation
that is resistant to deception by design;

e Demonstrating StoM’s security and effectiveness via extensive
field tests.

The rest of the paper is structured as follows. We discuss the
literature in Sec. 2. The background of automated production lines
and the motivational observation inspiring StoM are presented in
Sec. 3 and Sec. 4, respectively. We introduce the detailed design and
implementation of StoM in Sec. 5. The evaluation results of StoM
and the empirical analysis of spoofing the controlled stochasticity
are presented in Sec. 6. The applicability of StoM is discussed in Sec.
7. Finally, we conclude in Sec. 8.
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2 RELATED WORK

The real-life attack Stuxnet [23] has raised significant research
attention to deception attacks [11, 12, 28, 65, 67]. For example, Pu
et al. [49] replayed the normal operation of the industrial robot to
deceive human operators that the victim robot is operating normally.
Chung et al. [18] injected the faked operation data of surgical robots
to mislead the actions of doctors. Davide et al. [52] manipulated the
displayed states of industrial robots to deceive human operators
into falsely perceiving the robotic arm as safe for approaching.
Yang et al. [66] stealthily manipulated the control commands by
exploiting the mismatched frequencies between SCADA monitoring
and process operation.

Table 1: Comparison between StoM and existing IDSs.

Resistance to Requiring No Application Validated
Deception Attack System Dynamics Platforms Empirically

[29] v - Production lines v
[45] - v Production lines -
[51] - v Production lines v
[69] - v Production lines v
[10] - v Process Control -
[25] - v Process Control v
[67] - v Process Control v
[63] - - Process Control v

[3] - v Water Plant v
[26] - - Power Grid v
[70] v - Power Grid -
[17] - - Robotic Vehicles v
[53] v - Robotic Vehicles v
[24] v - LTI Systems " -
StoM v v Production lines v

LTI (i.e., Linear Time-Invariant) System defines a model of general systems.

A number of intrusion detection systems (IDSs) have been pro-
posed for production lines to mitigate the potentially life-threatening
impacts of attacks. Intuitively, manipulated system operations can
be identified by checking if the observed system states (e.g., ro-
bot’s angle) agree with the legitimate system models. Following
this idea, Narayanan et al. [45] modeled the operation of industrial
robots by exploring their repetitive behaviors. Pu et al. [51] verified
the operation of industrial robots using regular power consump-
tion. Zhang et al. [69] diagnosed industrial robots by exploring
the temporal relations among their different actions. To defend
against more advanced attacks that can manipulate the monitoring
data by replaying historical logs, Ghaeini et al. [29] applied an at-
testation strategy to authenticate industrial robots based on their
predictable operating traces in response to specific challenging
signals. However, the dynamics of industrial robots are required to
design proper challenging signals, which are not available for all
automated production lines.

It is possible to extend and apply the IDSs proposed for other
platforms to production lines [39]. For example, Choi et al. [17] and
Quinonez et al. [53] built physical dynamic models of unmanned
vehicles; Aoudi et al. [10] identified the chemical process using
the spectrum of time series; a state-space dynamic model of the
ultra filtration tank is constructed in [63]; the invariants of a water
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Fig. 1. Typical operation of automated production line.

treatment plant are identified in [3, 25]; a control graph model for
the distillation tower is constructed in [67]; the time pattern of com-
munication for power substations is explored in [26]; a command
prediction based detection/localization is proposed in [68]. How-
ever, all these IDSs assume the authenticity of the monitoring data
upon which they are built (i.e., to serve as a root of trust), which
may not hold for deception attacks. To bridge this gap, [24, 70] ex-
plored moving target defense (MTD)-based attack detection based
on the a priori knowledge of the dynamics of physical processes.
This knowledge is, however, unavailable and difficult to identify
for the automated production lines.

Table 1 summarizes the aforementioned IDSs and compares them
with StoM, emphasizing StoM’s unique advantage: protecting pro-
duction lines from deception attacks by randomizing their operation
without requiring any knowledge of system dynamics.

Also note that different from the “stochastic manufacturing”
in [59], which optimizes the manufacturing process under uncer-
tainties (e.g., electromagnetic disturbances), StoM exploits the ac-
tively injected (and controlled) stochasticity in the manufacturing
process to enhance system security.

3 PRELIMINARIES

We first introduce the background of automated production lines
and the risk of intrusions thereof, using our scaled-down but fully
operational platforms.

3.1 Automated Production Line

Different forms of automated production lines have been discussed
and deployed in practice [2, 5, 6, 22, 37, 41, 43]. Fig. 1 summarizes
these variations and depicts a generalized model, consisting of work-
stations, programmable logic controllers (PLCs), a transport system,
a SCADA, and other auxiliary devices [30]. Raw materials are trans-
ferred by the transport system and fed to different workstations for
processing. The completed products leave the production line from
the last workstation. The time interval between completing two
consecutive products is defined as the cycle time of the automated
production line, determining the manufacturing efficiency.

Workstation is the fundamental unit of a production line, respon-
sible for performing a specific manufacturing operation. A worksta-
tion consists of industrial robots, manufacturing machines (such as
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1 MODULE MainModule

2 // Declaration and initialization of commands
5 VAR num speed{4} := [50,50,50,50];

+ VAR num waiting_time{4} := [2,2,2,2];

5. VAR num acceleration{4} := [100,100,100,100];
6 VAR num position{4} := [pl1,p2,p3,p4];

s PROC main()

9 //Cyclic Manufacturing

) WHILE TRUE

11 // Updating commands

2 update commands;

13 // Setting robot speed as speed {1}~ max_speed/100

14 VelSet speed {1}, max_speed;
// Setting robot acceleration as acceleration
{1}« max_acceleration/100

16 AccSet acceleration{1}, max_acceleration;
//Picking up the object from position {1}

18 pick_up (position {1});

9 WaitTime waiting_time {1}; // Waiting
waiting_time {1}

20

1 ENDWHILE

Fig. 2. Exemplary operation code of AVM’s ABB robot.

milling CNCs), and conveyors, which collaborate sequentially or in
parallel. In a typical cycle of sequential operation, there are four ex-
ecution steps: (i) a to-be-processed part moves into the workstation
via the transport system; (ii) the industrial robot of the workstation
picks up the part and places it in the manufacturing machine; (iii)
the manufacturing machine processes the part; (iv) the industrial
robot picks up the processed part from the manufacturing machine
and places it to the transport system, warehouse, or other manufac-
turing machines in the workstation. The workstation might stop
for a while each time one of the above execution steps is completed
(e.g., to wait for other machines to be ready). For ease of description,
we refer to these execution steps and the subsequent waiting period
as operation steps. It is important to note that the operation time of
each workstation is consistent with the cycle time of the production
line. Parallel operation in production lines represents a variant of
sequential operation, incorporating a primary sequential operation
and one or more cooperative parallel sub-operations.
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Fig. 3. Testbed of Automated Vehicle Manufacturing.

PLCs (Programmable Logic Controllers) govern the operations of
automated production lines by processing signals from various
devices, such as CNCs and industrial robots, through the industrial
network (e.g., PROFINET). For instance, a PLC receives a signal from
a CNC indicating the completion of part processing and instructs
the industrial robot to pick up the processed part. Additionally,
PLCs are responsible for gathering and transmitting operation data
from the production line to the SCADA system.

Transport system moves objects between workstations along
a pre-deployed delivery path using conveyor belts, rollers, skate
wheels, and similar components. Note that the operation of the
transport system is controlled by the PLCs.

SCADA is a software system that supervises and oversees the op-
eration of production lines. SCADA controls the production lines
by sending specific instructions to the devices thereof (e.g., PLCs,
robots, CNCs), monitors the production lines based on the operation
data received from PLCs, and detects anomalies in the manufactur-
ing process. Fig. 2 gives an exemplary code of the robot in AVM: the
robot updates commands (i.e., Line 12) once receiving instructions
from the SCADA and operates accordingly (i.e., Lines 14-19).

3.2 Testbeds: AVM and ABM

According to the abstracted system model in Fig. 1, we build two
production line testbeds: Automated Vehicle Manufacturing (AVM)
and Automated Bottle Manufacturing (ABM).

As shown in Fig. 3, AVM consists of one workstation (one left sub-
workstation and one right sub-workstation). Each sub-workstation
has an ABB IRB120 robot, a conveyor belt, and an Omron CP1H PLC.
AVM supports the sequential operation of the right sub-workstation
(i-e., “welding” and “warehousing”) and parallel operation of both
sub-workstations (i.e., “assembly’):

e “welding™ picking up and moving the object in the air following
a square trajectory to simulate the welding operation;

o “warehousing” picking and placing the object in the warehouse;

o “assembly” assembling two objects into a cylinder by coopera-
tively operating the two sub-workstations.

The second testbed ABM produces bottles using 7 workstations
(see Fig. 4). These workstations are equipped with multiple con-
veyor belts, Siemens S7-1200/1500 PLCs, COMAU NJ60/Racer7/Rebel-
S6 robots, and DMG MORI HV-6/FAVGOL DT300 CNCs, supporting
the operation of “picking and placing”, “turning and milling”, “in-
spection”, “craving”, “inkjeting”, “assembly”, and “warehousing”.
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Fig. 4. Testbed of Automated Bottle Manufacturing.

Both AVM and ABM are equipped with a SCADA developed
with >3, 000 lines of C# code, consisting of three modules: a GUI
facilitating the real-time control/monitoring of the production line,
an intrusion detector detecting the potential anomalies based on
the received operation data [45], and the software implementation
of StoM.

3.3 Threat Model

We consider adversaries who want to mount deception attacks on
production lines, i.e., damaging the manufacturing process without
being detected by the SCADA, the sneakiness of which incurs more
risk to system operation than traditional manipulation attacks [19,
57]. Adversaries achieve this with the following abilities similar to
Stuxnet [23], which we have empirically corroborated on AVM and
are also commonly adopted in the literature [8, 18, 28, 51, 52, 67].

Ability-1: Invading the industrial network remotely. The in-
dustrial network is invadable from the public Internet due to incor-
rectly configured protection strategies [21, 38] and the frequently
exposed zero-day vulnerabilities [13, 33]. For example, adversaries
can first invade the corporate network [46, 61] to gain control of the
office equipment thereof (e.g., computers, printers) by exploiting
vulnerabilities such as MS08-067 [34] and MS17-010 [31]. Then,
by pivoting through the compromised equipment, adversaries can
gain access to the production line [15, 23].

Ability-2: Manipulating the operation of production lines
via code injection. Controllers, such as PLCs, in the production
line support the online reprogramming but via weakly authenti-
cated communication [14, 20, 47]. Once connected with targeted
controllers, adversaries can upload the malicious code using the
development software (e.g., STEP 7 for Siemens PLCs [7] and Robot-
Studio for ABB robots [1]) without authorization. For example,
Stuxnet uploaded the modified code to PLCs by infecting the STEP
7 development software [23]; PIDS used the RobotStudio to upload
malicious code to the robot directly [51].

Ability-3: Modifying the operation data reported to SCADA.
Recent attacks and exposed malware proved that SCADA systems
are not secure [4]. By eavesdropping and manipulating the commu-
nication packets, adversaries can send the deceived operation data
to SCADA using Ettercap [48] or NetfilterQuque [27]. For example,
PIDS tampered with the operation data by hijacking communi-
cation packets sent to the SCADA [51]; Stuxnet manipulated the
operation data stored in the PLC’s memory by injecting malicious
code [23].
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Table 2: The cyclical “welding” operation leads to similar
operation data per cycle in AVM.

‘ Control Commands ‘ Operation Data
Lllge Robot Conveyor  Waiting R%- Cycle

* | Speed (%) Speed (%) Time (s) | Correlation  Time (s)
1 50 50 2 0.99 27.2+0.1
2 100 60 5 0.98 37.4+0.2
3 90 70 45 0.98 348 +0.2
4 80 80 4 0.98 32.6 £ 0.2
5 70 90 3.4 0.98 30.0 + 0.2
6 60 100 3.3 0.98 30.0 £ 0.2
7 50 50 2.5 0.98 30.0 + 0.2
8 40 40 1.4 0.98 30.0 £ 0.3

Empirical Validation of Adversary Abilities. We have empiri-
cally corroborated the feasibility of the above adversary abilities and
mounted deception attacks to AVM with about 600 lines of Python
code. Specifically, we use (i) metasploit [36] to remotely invade
the industrial network where AVM is deployed, (ii) arpspoof [60]
to intercept the communication packets and NetfilterQueue [27]
to eavesdrop and modify the operation data in the packets, and
(iii) ABB robot’s Software Development Kit (SDK) [55] to upload
malicious code to AVM. Note that it is challenging for adversaries
to access the production line system in person, and thus, we as-
sume that adversaries cannot deploy any additional devices in the
production line to assist the attack. Please see [9] for a demo video
of such a deception attack.

4 MOTIVATING EXAMPLE

The fact that automated production lines commonly carry out man-
ufacturing operations cyclically lays the foundation of deception
attacks. To demonstrate this, we operate AVM to perform 600 times
the “welding” operation, with the speeds of the robot/conveyor belt
set as 50% of the maximum speed and the waiting time after each
execution step as 2s. Fig. 5 depicts the thus-collected operation data,
where the angles of robot joints behave similarly in each operation
cycle. The average R?-correlation [32] among the operation data of
different cycles is 0.99! (see Line 1 of Table 2). We have repeated the
above experiments with different control commands, each 50 times.
Table 2 summarizes the obtained results, demonstrating, again, the
similar operation data in each cycle. These observations corrobo-
rate that the cyclical operation of production lines leads to highly
similar operation data in each cycle, laying the foundation of decep-
tion attacks — adversaries can record the normal operation data and
then replay them to deceive the SCADA into concluding a normal
manufacturing process is underway, even when the production line
is actually being manipulated.

The above observations also reveal two other important facts: (i)
each setting of control commands leads to a determined cycle time,
with an average standard deviation of 0.59% (refer to Lines 1-8 in
Table 2); (ii) different combinations of control commands achieve
the same cycle time and manufacturing efficiency (refer to Lines 5-8
in Table 2). The first fact motivated us to detect deception attacks

!A close-to-1 R? indicates a higher similarity among different operations.
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by verifying dependencies between control commands and the
resulting operation time. The second fact highlights the opportunity
to randomize control commands of each manufacturing machine
while maintaining the overall cycle time.

Note that the commands we explored (i.e., speed and waiting
time) do not affect how the object is processed. Varying these com-
mands will not impact the production quality.

5 DESIGN OF STOM

Building upon the above insights, we have developed a ground-
breaking manufacturing paradigm called StoM, which fundamen-
tally neutralizes deception attacks by disrupting the cyclical opera-
tion of production lines through randomized control commands. In
every manufacturing cycle, StoM generates and sends randomized
commands to the manufacturing devices in the production line,
specifying their operations for the subsequent cycle, and detects de-
ception attacks by examining if the observed operation data of the
production line matches the randomized commands — replaying
pre-recorded normal operation data will not deceive StoM. StoM
ensures that the same cycle time and quality are maintained when
generating the randomized commands. We deliver StoM as a soft-
ware module of the SCADA system, which can be deployed without
requiring any hardware retrofits.

Fig. 6 depicts an overview of StoM, consisting of three steps:
capturing the dependency between control commands and opera-
tion data, generating randomized control commands, and detecting
deception attacks at runtime. We will next explain each of these
steps in detail.



RAID 2024, September 30-October 02, 2024, Padua, Italy

Zeyu Yang, Hongyi Pu, Liang He, Chentao Yao, Jianying Zhou, Peng Cheng, and Jiming Chen

8 > . >8 8
) R =56 6
E¢ e £ g g
= = = = [
= & g F4 o
o 3 E = £
=4 = —_ =
2 g £ . 82 22
= J f=
= ) R2=097 E e 'g'o g R%=0.93
9
40 60 80 100 oo 2 4 6 8 10 0 20 40 60 80 100 =0 2 4 6 8 0 20 40 60 80 100
Conveyor Speed (%) Specified Wait. Time (s) Robot Speed (%) Specified Wait. Time (s) Robot Speed (%)

(a) the 1st operation step (b) the 2nd operation step

(c) the 3rd operation step

(d) the 4th operation step (e) the 5th operation step

28 — PN — 210 — ~4 —— 28 —

; Operation Time ) \; @ O Operation Time ; Operation Time

E 6 —Fitted Time E —Fitted Time E 8 H—Fitted Time g 3k —Fitted Time E 6 ted Time P

= = = 6 c =

T4 3 3 32 4

z & B4 S z

= 2 = £ = 5

$2 o B =1 g2

8 g A |g R?=0.99 S |R?=088 & R%=0.99

o I3 a. =0. =0. =0.

0% = E 0% 0 £0

@m0 2 4 6 8 A0 20 40 60 80 100 ko 2 4 6 8 10 40 60 80 100 Mmoo 2 4 6 8
Specified Wait. Time (s) Robot Speed (%) Specified Wait. Time (s) Conveyor Speed (%) Specified Wait. Time (s)

(f) the 6th operation step (g) the 7th operation step

(h) the 8th operation step

(i) the 9th operation step (j) the 10th operation step

Fig. 7. The dependency between control commands and the resultant operation time can be described by Eq. (2).

5.1 Identify Control-Operation Dependency

StoM’s randomization of the manufacturing process is built on the
dependency between the issued control commands and the con-
comitantly resultant operation time. Let us consider that a robot in
the production line receives the commands specifying its maximum
speed v and waiting time t,,. The robot moves for distance d by
accelerating from speed 0 to v with acceleration a, moving with v,
decelerating from v to 0 with acceleration —a, and waiting for time
tw. The time ¢ to complete this operation is:

o d-20%/(2a) o 1
t:—+#+—+thd~u‘1+—-o+tw, (1)
a v a a
showing the operation time can be described in the form of:
t=Ge)=w;-c T +wr+ws-c (2)

where c is the control command of a given operation step specifying
the speed of a device or the waiting time after an execution step,
and the function G(+) with coefficients of {w1, w2, w3} denotes the
dependency between command ¢ and operation time ¢. We next use
200 cycles of AVM’s “welding” operation to empirically examine this
dependency. Specifically, we vary the speed of different execution
steps, i.e., {moving-in, picking-and-placing, welding, placing-and-
returning, moving-out}, as {30~100%, 10~100%, 10 ~ 100%, 10~100%,
30~100%} of the maximum speed, and specify the waiting time after
each of the above execution step as {0~10s, 0~7.5s, 0~7.5s, 0~10s,
0~7.5s}. Fig. 7 shows the relationship between the control com-
mands and the corresponding time to complete different operation
steps, which can be well fitted using the function G(-) in Eq. (2):
the average (or worst case) R? of 0.97 (or 0.88) corroborates the
high goodness of fit.

StoM identifies function G(+) based on the historical control com-
mands. Let us consider the historical data with n manufacturing
cycles, each containing m operation steps. The dependency be-
tween historical control commands and the time to complete the
ith operation step (i € {1,2,---,m}) can be written as:

T; = X; - wi, (3)
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where T; = [t 1, ti2, .. ., ti,n]T denotes the operation time vector in
the ith operation step, w; = [w1,i, w2,i, wg,i]T denotes the coefficient
vector of function G;(-) in the ith operation step, and X; is the
control command matrix in the ith operation step:

|

i1 Ci1
C;zl 1 cip
Xi=| 4
-1
Cin 1 cin

StoM then uses the least squares method [35] to identify the coeffi-
cient vector w; in G;(-):

wi = (X X)X T, (5)
The empirical results show that 3 cycles of operation data resultant
from different commands (i.e., n > 3) are sufficient for StoM to
identify the function G;(-) in each operation step, which can be
further updated/refined using the newly collected operation data
at runtime, as we will elaborate in Sec. 6.3.

5.2 Generate Randomized Commands

In practice, manufacturing machines rarely operate at full speed [37,
41], offering StoM the chance of adjusting the operation speed of
each manufacturing step without affecting the overall cycle time.
With the control-operation dependency captured in Sec. 5.1, StoM
injects the controlled stochasticity to the production line by issuing,
in each manufacturing cycle of a workstation, randomized control
commands specifying the speed and waiting time of devices thereof.
Note that StoM will not randomize the acceleration/position of de-
vices (as defined in Lines 5-6 of Fig. 2), because (i) only part of
manufacturing machines support the online management of accel-
eration, and (ii) the changing of positions may degrade the product
quality. Also, in view of the fact that different workstations in a
production line operate independently, StoM generates commands
for each workstation individually.
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Algorithm 1 Randomization of Sequential Operations

Input: T, L = {Li,Ly,---,Lp}, U = {U,Us,-+-,Un}, G =
{G1,G2, -+ ,Gm};

Output: Cj = {cyj,coj, " ,Cm,j} T = {fl’j, fz’j, s ,fm,j};
t: Tiin = Z:r:ll L;;
2: AT =T — Tin;  // total time that can be randomized
3 for(i=1;i <m;i++)do
4: aj =U; —Lj; //time that can be randomized for each step
5. end for
6: 1 =arg_sort(as,az, - ,am);
7. for (i=0;i<m-—1;i++)do

8: At = random (0, min (aﬂ[i], AT));

9 fﬂ[i],j = Lyj;) + At;  // the randomized time for each step

10: AT = AT - At

11: end for

12: At = AT;  // the randomized time for the last step

13: f]I[m—l],j = L]I[m—l] + At;

14: for(i=1i<mi++)do

15: Cij = Gi_1 (fj);  // the randomized control commands

16: end for

17: return C; and f"j,

5.2.1 Randomization of Sequential Operations. Denote Cj = {cy,j,
€2,j,"** »Cm,j} as the m commands to configure an m-step operation

of a workstation at the jth manufacturing cycle and T = {f1 ;, 2, ;,
-+, Im,j} as the corresponding operation time. StoM randomizes
Cj and estimates YA"J as:

randomizing Cj=A{crjcojsCmj)
s.t. fi,j = Gi(cij), (6)
D hy=T ()
=1 W T
fij e [LiUil, (®)

where T is the expected cycle time of workstation; L; and U; are the
lower and upper bounds of the time to complete the ith operation
step; G;(-) is the identified function of Eq. (2). Note that Egs. (7) and
(8) are two requirements that the randomized command generation
must satisfy: (i) T has to be maintained to ensure the same manu-
facturing efficiency; (ii) the time to complete each operation step
has to be lower-bounded (or upper-bounded) by L; (or U;), which
depends on the fastest (or slowest) execution speed or the smallest
(or longest) waiting time of devices in the workstation.

Alg. 1 summarizes StoM’s randomized command generation for
sequential operations, following the basic idea of (i) identifying
the shortest time to complete all operation steps based on Eq. (8),
(if) stochastically slowing them down — in ascending order of the
deviation between U; and L; — to ensure that the thus-resultant time
to complete operation steps satisfies Eq. (7), and (iii) converting
the expected operation time to control commands using Eq. (6).
Note that StoM will have non-unique solutions for the randomized
control commands Cj, as long as not all manufacturing machines
operate at full speed — a common practice in production lines.
Because the workstation will not operate according to the received
commands until the next manufacturing cycle, StoM has enough
time to generate the randomized commands C;.
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(a) normal assembly

(b) collision of robots

Fig. 8. The left robot needs to arrive at the assembly position
later than the right robot to avoid collision.

5.2.2  Randomization of Parallel Operations. In addition to the op-
erating time constraints imposed by sequential operations, the
command randomization for parallel operations must conform to
the physical/space constraints between the sequential and paral-
lel sub-operations. Taking AVM’s “assembly” operation shown in
Fig. 8 as an example, the robot on the right side has to arrive at the
assembly position earlier than the left robot; otherwise, they will
collide when the left robot moves down to assemble with the right
robot. To avoid introducing physical conflicts (e.g., collision) to the
production lines, we add additional physical/space constraints into
StoM’s command randomization. Let us consider a parallel oper-
ation with (m + r) operation steps (including a main sequential
operation with m steps and additional parallel sub-operations with
a total of 7 steps). StoM generates randomized C; = {cy,j,c2j, - ,
Cm+r,j} for the jth manufacturing cycle by:

randomizing Cj=A{cyjrcajs - Cmarjh
s.t. fi!j = G,’(C,',j), 9)
Zm =T (10)
i=1 5/ ’
fij € [Li,Ui], (11)
m+r ~
Vkellgl, )" aik-fiy >0, (12)

where a;; € {-1,0,1} specifies the physical/space constraints
for parallel operations according to the operation manual, and ¢
denotes the total number of physical/space constraints.

Still taking AVM’s “assembly” operation as an example, the right
and left robots arrive at the assembly position via steps of {1, 2,3}
and {11, 12,13}, respectively, and taking a time of Z?zl fi! j and
Z?:n fi,j. To avoid the collision, the right robot needs to arrive
earlier than the left robot, i.e., Z?:l i, i< 21211 i, j» and thus the
a; s in Eq. (12) can be written as:

-1, ie{1,23}
aig=1 0. i€{456,7,8910,14,1516,17,18} (13)
1, ie{11,12,13}

Alg. 2 summarizes StoM’s randomized command generation for
parallel operations, following the basic idea of: (i) randomly gen-
erating the control commands for the main sequential operation
using Alg. 1, (ii) randomly generating the control commands for the
parallel sub-operation steps that should not be previously assessed
and marked as infeasible control commands, and (iii) determining
if the generated control commands satisfy Eq. (12) — the control
commands will be marked as infeasible and then generated again
if not. Note that the manufacturing process still operates at the
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Algorithm 2 Randomization of Parallel Operations

InPUt: T,L = {LlsLZ; cee ’Lm+r}, U= {U1>U2’ ce ,Um+r}> G =
{G1,G2,- -+ . Gmar} aig(i € [Lm+r], k € [1,9]);

Output: ch ={crj. 2 s Cmtrjhs
T ={tij. bo ). bmar s
1: flag = false;
2: while not flag do
3: {evjicajo-vemjh L ba .- imjt = Alg. 1
4: for(i=1;i<r;i++)do
5 Z¢m+i,j = random (Ly+i, Um+i);
6: end for
7: flag = true;
8: for (k=1k <q k++)do
9: if Zi;{r a;f - fi,j < 0 then
10: flag = false; // physical/space constrains not satisfied
11: end if
12: end for

13: end while

14: for(i=1i<r;i++)do

15: Cm+i,j =G (fmﬂ-,j); // the randomized control commands
16: end for

17: return C; and fj.

-1
m+i

expected efficiency even without generating newly randomized
control commands. We have also empirically examined how many
trials of command generation are needed before a valid solution can
be identified. Fig. 9 shows that StoM only needs an average of 1.7
trials to generate the commands for AVM’s “assembly” operation
and the first trial successes with a chance of 60%.

5.2.3  Security Analysis of StoM’s Randomness. Next, we examine
the possibility of adversaries guessing the randomized control com-
mands for sequential operations, which also forms the security
foundation for randomization of parallel operations. We measure
such possibility using the entropy of the operation time randomiza-
tion [64]: a larger entropy indicates a higher level of randomness
and hence more secure, as it will be more challenging for adver-
saries to guess the corresponding randomized control commands.

Specifically, the entropy of the expected operation time of an
m-step sequential operation can be calculated as:

U pU; Un-1 .
H:—/ / / P(tl,jstz,js"’stm,j)x
Ly L, Lin-1

logz (p (fl,j, fz,j, e, fm,j)) dfm_l,jdfm_z,j s dfl,j’
where p(fL > fg, s fm, j) denotes the probability distribution of
the expected operation time:
p(tjptay - im))
=p (E1) X p (Boj | E1j) X X p by [ b1 g B s Eme1j)

_ I—lm—l 1
Tl i—1 2 ’
min {Ui ~ Ly AT = T G - Lk)}
where AT =T — 3, L; denotes the total time that StoM can ran-
domize and the precision of randomized time is 1 second. Note that
p(fm,j | fl,j, fz,j, e ,fm_l,j) = 1 because fm,j can be determined
completely by {1 j, 2}, ,m-1,j} according to Eq. (7). Taking
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Fig. 9. StoM needs only 1.7 trials on average to randomize
steps in parallel operation of “assembly” in AVM.
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Fig. 10. The entropy of the expected operation time returned
by StoMis close to its theoretical maximum.

the case of m = 3 as an example, Fig. 10 shows that the entropy H
of the operation time randomized by StoM is close to its maximum
Hmax (achieved when the operation time is uniformly distributed):
(i) both H and Hp,,x increase, while their difference decreases, with
a larger AT, and (ii) the entropy H resulted by StoM achieves the
maximum when AT = (Uy — Ly) + (Uz — La).

5.3 Detect Deception Attack in Runtime

After sending the randomized commands to the production line,
StoM detects deception attacks by comparing the empirically ob-
served operation time with the expected ones.

Identifying Empirical Operation Time. Workstations report
only the data describing the real-time operations of devices thereof
(e.g., the robot’s joint angle), but without the time with which the
operations are completed. StoM thus will identify the operation
time from the data log. Taking the “welding” operation of AVM as
an example, all devices (including industrial robots, PLCs, infrared
sensors, conveyor belt, and welding guns) in the workstation report
their operation data to StoM: the curves @ in Fig. 11 show the
angle of robots’ Joints-1 and Joints-2, and the curves ®@®® in Fig. 11
show digital signals indicating whether the workstation operates,
the object moves in, and the robot performs welding, respectively.
Taking the above 5 time series as inputs, StoM identifies the time for
the conveyor to complete the object moving-in, the robot to com-
plete the object welding, and the waiting time after each execution
step as follows.

(1) Identifying the start/stop events of device operation. The op-
eration data consists of both analog signals (e.g., the robot’s
joint angle) and digital signals (e.g., power on/off), requiring
different treatments to identify events. StoM first determines if
the collected signal is digital or analog by checking whether the
data series only contains “0” and “1” — i.e., the signal is digital
(or analog) if yes (or not). StoM then transforms the operation
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Fig. 11. AVM’s “welding” operation data reported to SCADA.

data to events based on the fact that when the event happens,
the digital signal changes from “0” to “1”, and the differential
of an analog signal varies from a large value to 0 (or from 0
to a large value). Specifically, StoM searches the data x; when
xj =1and x;j_1 = 0 for a digital signal series x, and the data
xj when the deviation |x; — xj-1| < y and |xj — xj+1| > y (or
|xj = xj-1| > y and |xj — xj+1| < y) for an analog signal series
xj. The identified timestamp of x; will then be treated as the
time an event happened. This way, StoM searches in all the time
series to identify events E = {ej, ez, -, ey}, where h is the
number of the identified events. Note that y is the threshold
that should be larger than the maximal deviation of analog sig-
nals when the device does not operate, while smaller than the
minimal deviation of analog signals when the device operates
at the slowest speed.

—
oY)
~

Classifying events E = {ej,eq,-- - , ey} into p categories (i.e.,
E = {E1,Es, -+ , Ep}) according to the operation they belong to,
where p =1 (or p > 2) in the sequential (or parallel) operations
denotes the number of sub-operations thereof. Denote Ej =

{ef. €5, -, em, } as the set of my events in the kth category.
(3) Sorting the kth category of events Ey to {e{’,e;’,- -+, e, } ac-

cording to their timestamps, i.e., t(e]’) < t(ey) < -+ < tlep,),
where t(e]’) denotes the timestamp of event e;’.

0

~

Calculating the operation time based on the consecutive events

in the kth category, i.e., t; = t(e]’) — t(e ).
When applying the above operation time identification, StoM
needs to address the following two practical challenges. First, the
robot/CNC might operate using only part of the joints/motors,
which may cause the mis-identification of events. For example, the
angle of robot’s Joint-2 (the curve @ in Fig. 11) shows that the robot
starts at 10s, while the robot actually starts at 8.1s according to
the angle of Joint-1 (the curve @ in Fig. 11). To address this, StoM
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considers all joints/motors of a manufacturing device when identi-
fying the events. Specifically, StoM first identifies the source of each
data series based on the IP address of the communication packets
containing the operation data, and then calculates the average value
of the data series from the same device, i.e., for an analog signal
with § number of data series of {x1,x2,---,xs}, StoM calculates
the average value by x = (1/S) - Zle x;, and uses X to identify the
events operated by the corresponding manufacturing device. Sec-
ondly, the same event may induce multiple varying signals, leading
to the redundant identification of events and wrong calculation
of operation time. For example, both the events at 13.1s and 13.3s
identified from data series (the curves ®® in Fig. 11) indicate the
starting of the welding. StoM will mis-identify the welding event
and mis-conclude the corresponding operation time as 0.2s if not
properly treated. StoM addresses this issue by merging the two
events when the gap of their timestamps is too small, i.e., for a
sorted event series {e]’, e}, -, ey, } (see the curve @ in Fig. 11),
an event ej will be deleted if |t(e;) — t(ej—1)| < &, where § is the
threshold that is empirically set as twice the average time interval
for the workstation to report the operation data.

Taking AVM’s “welding” operation shown in Fig. 11 as an exam-
ple where y is 0.2s and ¢ is 0.3s, StoM first calculates the average
angle of the Joint-1 and Joint-2 (the curve ® in Fig. 11). Then, StoM
transforms the operation data to events, sort them, and find that:
(i) the workstation starts at 0.8s; (ii) the object moves in at 5.4s; (iii)
the robot starts at 8.1s and 13.3s; (iv) the welding process starts at
13.1s. After that, StoM merges events whose happened interval is
small enough, e.g., the start time difference between the robot and
the welding signal is [13.3 — 13.1] = 0.2s (see the curve @ in Fig. 11
for the events after merging). Finally, StoM calculates the time to
complete these operation steps based on the identified events, e.g.,
the time to complete the moving-in is 5.4 — 0.8 = 4.6s, the waiting
time after the moving-in is 8.1—5.4 = 2.7s, and the time to complete
the welding is 15 — 13.1 = 1.9s.

Detecting Deception Attacks. StoM compares the empirical and
expected operation time to detect deception attacks with the fol-
lowing 4 steps.

(1) calculating the residual (A ;) between the empirical and expected
operation time at the jth manufacturing cycle:

m ~
Aj= Zi:l Iti,j = til; (14)
where #; ; and f; j are empirical and expected time to complete
the ith operation step in the jth manufacturing cycle;

(2) calculating the expected value (§) and the standard deviation
(o) of the time series of residual A; during normal operation:
1 n 1 n o1
5_;Zj=1AJ- and o—(;ZFlAj)Z, (15)
(3) calculating the residual sum as s; = max(sj-1 +Aj — 6,0);

(4) raising an alarm if s; > 7, where 7 is the alarming threshold
and is typically set as 40 [44].

6 EVALUATION AND ANALYSIS

We have experimentally evaluated StoM on AVM and ABM, focusing
on three key aspects: its resistance to deception attacks, its ability
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Fig. 12. DR, FA, and ¢ with different a and b for intermittent deception attacks.

Table 3: Configuration of StoM on AVM.

Parameters “Welding” “Warehousing” “Assembly”
Number of
Hmber o 10 6 18
operation steps
Sampling rate (s) 0.15 0.15 0.15
Upper bounds (s) {30} x 10 {30} x 6 {30} x 18
{2.8,0.3,2.6,0.3,0.7,
Lower bounds (s) 2,0.5,2.6,05, {2.8,0.3,6.6, 0.3,2.3,0.3,1.3,0.3,
0.7.0.3,2.3,0.3, 310,03 2.8,03,2.6,0.3,0.7,
1.8,0.3} 03,2303
ayis =
{-1-1-10,0,0,
Constraints/ _ _ 0,0,0,0,1,1,1,0,
conditions 0,0,0,0}, azxs =

{L1L1,1L1,11,1,
L1L-1,-1,-1,-1,
-1,-1,-1,-1}

to control and maintain manufacturing efficiency, and the amount
of historical data required for StoM to identify the control-operation
dependency. Table 3 lists the configuration of StoM when imple-
mented on AVM, where the lower bounds are identified (and then
empirically validated) based on the data-sheet of devices thereof
(e.g., ABB robots [56]). Constraint a; j is to avoid the collision and
ay k. is to ensure that the left sub-workstation completes the oper-
ation before the completion of each manufacturing cycle. Table 4
summarizes the configuration of StoM when implemented on ABM.

6.1 Detecting Deception Attacks

We classify deception attacks into three categories based on how
adversaries manipulate the operation data.

o Continuous deception attack: adversaries record the normal cyclic

operations and replay them repeatedly.
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o Intermittent deception attack: adversaries mount the attack inter-

mittently to be more stealthy. Specifically, the adversary mounts
the attack (i.e., manipulating the production line’s operation and
replaying the operation data) every a cycles, and each attack lasts
for b cycles (a > b > 1). Clearly, this attack reverts to the above
continuous attack when a == b. Note that although a larger
a and smaller b make the attack stealthier, the severity of the
attack is alleviated because only b/a of manufacturing cycles are
compromised.

o Advanced deception attack: adversaries who acquire the random-
ized control commands generated by StoM, coupled with detailed
knowledge about the specific dynamics of the production line,
can manipulate the operation data to align with the randomized
control commands. This manipulation voids StoM’s ability to
detect deception attacks.

We have experimentally evaluated StoM against the continuous and
intermittent deception attacks, and uncovered the infeasibility of
the advanced deception attacks in practice.

All the 3 operations of AVM (i.e., “welding”, “warehousing”, and
“assembly”) and the 7 operations of ABM (i.e., “picking and placing”,
“turning and milling”, “inspection”, “craving”, “inkjeting”, “assembly”,
and “warehousing”) have been mounted with the deception attacks
to evaluate StoM. Specifically, for each operation, the testbed first
operates normally for 100~300 cycles, after which the deception
attacks are mounted to make the testbed operate abnormally for the
same number of cycles. Each test is repeated 10 times. We evaluate
StoM’s detection of deception attacks using detection rate (DR) and
false alarm rate (FA):

DR X 100% and FA = X 100%,

_ TP P

~ TP+FN TN + FP
where TP (or FN) is the number of manipulated manufacturing
cycles that are classified as attacked (or normal), and FP (or TN)
is the number of normal manufacturing cycles that are classified
as being manipulated (or normal). We also examine the detection
latency to evaluate how quickly StoM detects the attack.
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Table 4: Configuration of StoM on ABM.

Parameters “Picking and “Turning and Milling” “Inspection” “Craving” “Inkjeting” “Assembly” Warehousing
Placing”

# of operation steps 4 16 4 7 4 9 4
Sampling rate (s) 1 1 1 1 1 1 1
Upper bounds (s) {325} x 4 {325} x 16 {325} x 4 {325} x 7 {325} x 4 {325} x 9 {325} x 4
Lower bounds (s)  {30,3,10,3}  {%»3:343,343,30,3} (103104  {3,31,3,3,3,21,3) {53,10,2) {#-34354} (323163

31, 3,42, 16, 39, 3, 10, 25} 2,3,17}
ais ={0,0,0,0,1,1,1,
Constraints/ _ 1,1,1,1,1,0,0,-1,0}, _ _ _ aprs=1{-1,-1, _
conditions az s = {0,0,0,0,0,0,0, -1,-1,0,0,0,0,1}
0,1,1,0,0,0,0,0, —1}
Table 5: Summary of experimental results of StoM on AVM and ABM.
Sequential | Total StoM’s Performance in Attack Detection
Testbeds Operations or Number | Detection of Continuous Attack | Detection of Intermittent Attack | Estimation Control
Parallel |of Cycles| DR(%) FA (%) Latency |DR (%) FA (%) Latency ¢ (%) |Accuracy (%) |Precision (%)
“welding” Sequential | 150 X 10 |  99.6 0 1.6 99.8 0 1.3 5 93.0 97.5
AVM “warehousing” Sequential | 300 x 10 99.9 0.03 1.4 99.8  0.03 1.2 5 96.2 97.9
“assembly” Parallel | 100 x 10 |  99.7 0 1.3 99.7 0 1.3 5 93.7 96.6
“picking and placing” | Sequential | 100 X 10 | 100.0 0 1 100.0 0 1 5 99.9 99.0
“turning and milling” | Parallel | 100 X 10 | 100.0 0 1 86.0 0 1 5 97.7 97.8
“inspection” Sequential | 100 X 10 | 100.0 0 1 100.0 0 1 5 97.3 98.3
ABM “craving” Sequential | 100 x 10 | 100.0 0.4 1 100.0 0.4 1 5 99.9 99.2
“inkjecting” Sequential | 100 x 10 | 100.0 1 100.0 0 1 5 97.6 97.2
“assembly” Parallel | 100 x 10 | 100.0 0 1 98.0 0 1 5 93.0 96.7
“warehousing” Sequential | 100 X 10 |  100.0 0.6 1 100.0 0.6 1 5 99.9 99.2
StoM vs. Continuous Deception Attacks. As summarized in StoM vs. Advanced Deception Attacks. Sophisticated adver-

Table 5, StoM detects continuous deception attacks to AVM (or
ABM) with an average DR of 99.7% (or 100%), FR of 0.01% (or 0.1%),
and latency of 1.4 (or 1.0) manufacturing cycles.

StoM vs. Intermittent Deception Attacks. StoM detects inter-
mittent deception attacks (with attack cycle a = 100 and attack
duration b = 5) to AVM with an average DR of 99.8%, FR of 0.01%,
and a latency of 1.3 manufacturing cycles (see Table 5). StoM also
performs well on ABM, achieving 100% DR, no false alarms, and
a latency of 1 manufacturing cycle for most of the 7 operations,
except {86%, 98%} DR for the {“turning and milling”, “assembly”}
operations and {0.4%, 0.6%} FA for the {“craving”, “warehousing”}
operations.

We have also evaluated the impacts of replaying cycle a and
attacking cycle b on StoM’s detection for intermittent deception
attacks, by (i) setting b as {1,5,10,15} and varying a from b ~ 500,
and (ii) setting a as {200,300,400,500} and varying b from 0 ~ 50.
Different a and b lead to different attack severity, which we quantify
using how many manufacturing cycles are affected, i.e., ¢ = b/a X
100%. Fig. 12 shows the results obtained with AVM: (i) both the
detection rate DR and the harmfulness ¢ decrease (or increase)
with a larger a (or b), and (ii) a 100% DR and no false alarm is
achieved/triggered when b > 10 or ¢ > 2%.
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saries — i.e., adversaries with full knowledge of the production line
and StoM — can deliver advanced deception attacks to void StoM in
the following two ways.

Attack-1: Adversaries who know the specific dynamics of the pro-
duction line and the randomized control commands can carefully
forge the operation data to make them consistent with the control
commands randomized by StoM.

First of all, it is the operation data from which StoM identifies
the operation time of each manufacturing step and further detects
deception attacks. To evade StoM, adversaries have to generate
proper operation data based on the dynamics of production lines,
which is, however, challenging: (i) the parameters of each machine
in production lines, such as the Denavit-Hartenberg parameters of
robot arms, are proprietary to equipment manufacturers (e.g., ABB,
KUKA), preventing adversaries from deriving theoretical dynamics
of the production lines; (ii) the barely triggered operation status
limits adversaries from accurately and completely identifying the
non-linear dynamics from historical operation data.

Even if they have learned the dynamics of production lines, ad-
versaries have to obtain the randomized control commands further.
The randomized control commands can be protected by applying
a mask, such as the format-preserving mask. After receiving the
masked control commands from SCADA, the controller can obtain
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Fig. 13. Empirical and expected cycle time of the “welding”
operation of AVM.

the original randomized control commands based on specific map-
pings. This prevents adversaries from eavesdropping the random-
ized control commands via man-in-the-middle attacks. Also, even
if adversaries can compromise the controllers, it is still non-trivial
to identify the unmasking function because adversaries need to
disassemble the binaries of firmware and control programs, which
are proprietary and diverse among controller vendors. Note that
unmasking the control commands only incurs small overhead to
controllers. For example, we deployed a linear unmaking function
in a Siemens S7-1500 PLC, showing that only 0.02ms overhead is
induced to the original calculation cycles (> 2ms).

Attack-2: Adversaries who have the knowledge on all possible control
commands to be randomized by StoM and the corresponding operation
data, can launch advanced deception attacks. Specifically, whenever
a newly generated command by StoM has been eavesdropped, adver-
saries search the records to find the one closest to the new command
and replay the corresponding operation data to SCADA.

We have examined such an advanced attack on AVM, showing
that a huge storage space is needed to record all possible variations
of control commands and operation data, exceeding the storage
capacity of devices in the current production line and thus renders
the advanced attack impractical. Specifically, let us consider a work-
station with m operation steps, x sensors (with 4-Bytes for each
sensory sample), sampling rate s, cycle time T, and alarm thresh-
old 7. To void StoM, the adversary needs to make sure Aj < § in
Eq. (14), otherwise the corresponding s; will increase gradually and
trigger sj > 7. Such constraints require the adversary to record at
least (U; — Lj)/§ control commands for each operation step i. The
required storage space is thus:

Q=4x-T/s- ﬂzl (U; — L) /6. (16)

According to the settings of AVM in Table 3, the operations of
“welding”, “warehousing” and “assembly” require adversaries to store
16PB, 3TB and 108PB data. Because the adversary is hard to deploy
additional computational/storage devices to the production line,
these huge data can only be stored on the existing devices of the
production line, whose storage capacity is way too small to satisfy
the requirements, such as 40GB in ABB/COMAU robots, 100MB in
Siemens/Omrom PLCs, and 500GB in general purpose computers.

6.2 Maintaining Manufacturing Efficiency

We next examine StoM’s ability of maintaining manufacturing effi-
ciency, by checking whether StoM can (i) accurately estimate the
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expected time to complete each operation step, and based on which,
(ii) precisely control the cycle time to the expected level.

We evaluate StoM’s estimation of the expected operation time
by comparing the expected and empirical time to complete the ith
operation step of the jth manufacturing cycle, i.e., comparing t; ;
andfi,j wherei € {1,2,---,m}and j € {1,2,--- ,n}:

1 m n |tij - fijl
Acc=1- —— X 100%. 17
Ly s w

We log the control commands and operation data of 100~300 cycles
of AVM’s 3 operations and ABM’s 7 operations. We repeat this for
each operation step 10 times, and then apply StoM to estimate the
time to complete these operation steps. The results are given in
Table 5, showing that StoM achieves an average estimation accuracy
of 94.3% for AVM’s 3 operations and 97.9% for ABM’s 7 operations.

We next examine StoM’s precision of controlling the cycle time.
Specifically, we set the cycle time of AVM and ABM as 30s and 325s,
respectively, and then perform StoM to control each of AVM’s 3
operations and ABM’s 7 workstations for 100~300 cycles. Table 5
shows that StoM achieves an average 97.3% control precision for
AVM’s 3 operations and 98.2% precision for ABM’s 7 operations.
We have also randomly changed the expected cycle time of AVM’s
“welding” operation from 15s to 40s, and performed the same opera-
tions for 300 cycles. Fig. 13 corroborates that StoM controls AVM’s
cycle time with an average precision of 97.9%.

6.3 Required Runtime Operation Data

Lastly, we examine how many cycles of operation data is needed
for StoM to capture the dependency between the control commands
and operation time (i.e., G;(-) in Eq. (2), using AVM’s 3 operations
as examples. Fig. 14 summarizes StoM’s accuracy of estimating the
operation time with the number of manufacturing cycles increases
from 1-200, showing that StoM needs only 3 cycles of operation
data to capture the control-operation dependency with an >92%
accuracy, which increases further when more data is available. Such
less operation data required for training G; (+) help StoM, at runtime,
update/refine the control-operation dependencies of a production
line using the latest collected operation data.

7 DISCUSSION
Below we present several further discussions of StoM.

Broader Applications. StoM has broader applications than just
protecting production lines from deception attacks. First, StoM
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can be applied to diagnose any anomaly that violate the control-
operation dependency, e.g., incorrect operation data due to sensor
failure or communication error. Also, StoM can be applied to other
manufacturing systems than production lines. As depicted in Fig. 15,
manufacturing systems can be classified into two categories, i.e.,
discrete and continuous control systems, where the discrete control
systems can be further represented by two typical implementations
according to their operation tasks: automated production lines and
flexible manufacturing systems. Continuous control systems are
commonly used to manufacture fluid/gas/powder products (e.g.,
purifying the alcohol from a mixture), where the materials are pro-
cessed continuously without the concept of “manufacturing cycle”.
However, StoM’s basic idea — i.e., injecting stochasticity to system
operation based on the relationship between the control commands
and operation data — can still be applied to continuous control
systems. For example, StoM can randomize the continuous control
by periodically (and randomly) updating the control set-points that
determine the production efficiency but not the quality, and con-
trolling such stochasticity to make the physical process achieve the
same production efficiency in the long run. Flexible manufacturing
systems support customized production, for which StoM can be
applied with a similar appraoch as for production lines. Note that
the operation tasks of flexible manufacturing systems may vary
based on the products to be manufactured, causing varying cycle
time and thus requiring more fine-tuned algorithms for StoM to
randomize the control commands.

Configuration for Parallel Operations. The deployment of StoM
for parallel operations requires the configuration of a; j in Eq. (12),
which can be done by supporting engineers who have the domain
knowledge of a given production line (i.e., as we do for AVM and
ABM). Besides, StoM can also be configured using system twins/sim-
ulators, often provided in production lines nowadays. For example,
we can use the twin/simulator to identify the control commands
that cause (or do not cause) collisions, based on which we can
identify the valid configurations of a; ;. via data-driven approaches.

Further Improvement of Control Precision. The precision of
StoM in controlling the cycle time (i.e., averaged at 97.9% for AVM
and ABM) can be improved further by mitigating the inherent/
slight variance in the operation of the production line. Take AVM
as an example, where the object is placed onto the conveyor belt
by the robot’s gripper. The sticky gripper (due to the aged rubber
ring) of the robot causes a slight variance in the object’s position
on the conveyor belt, which causes, in turn, variances in the time
to complete the moving-out operation steps, as observed in Fig. 7(i).
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Regularly maintaining the gripper helps reduce this physically in-
duced variance and thus improves StoM’s control precision. Besides,
StoM’s precision can be further enhanced by capturing and incor-
porating this variance into generating the randomized commands,
which we will explore in our future work.

Manufacturing efficiency/quality vs. randomized commands.
As explained in Sec. 3.1, the operation steps within any workstation
consist of (i) the movements of the to-be-processed parts, (ii) the
processing of parts in manufacturing machines, and (iii) the waiting
period for coordination with other workstations. By collaboratively
adjusting the speeds of these steps within each workstation, StoM
maintains the execution cycle and thus preserves manufacturing
efficiency. In addition, although specific processes, such as cooling,
may be time-critical, the movement of parts (via conveyors or robot
arms) and the stopping of machines do not affect product quality. By
not randomizing commands for the time-critical processes, StoM can
ensure consistent product quality. Specifically, StoM can be applied
by setting the upper/lower bound of the time-critical process as its
original time t;, i.e., setting L; = U; = t; in Egs. (8)(11).

8 CONCLUSION

This paper presents StoM, a new paradigm of manufacturing that
is resistant to deception by design. StoM stochastically controls the
production line operation without degrading the manufacturing
efficiency/quality, and checks if the injected stochasticity can be ob-
served from the operation data. We have experimentally evaluated
StoM on two automated production line testbeds.
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